Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 609
Filtrar
1.
Mycologia ; 116(2): 291-298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38294503

RESUMO

Plants belonging to the genera Astragalus, Oxytropis, Ipomoea, Sida, and Swainsona often contain the toxin swainsonine (SW) produced by an associated fungal symbiont. Consumption of SW-containing plants causes a serious neurological disorder in livestock, which can be fatal. In this study, a fungal endophyte, Alternaria section Undifilum, was identified in Astragalus garbancillo seeds, using polymerase chain reaction (PCR) followed by direct sequencing. In seeds, the SW concentrations were about 4 times higher than in other parts of the plant. Furthermore, microscopic examination demonstrated that the fungus mycelium grows inside the petioles and stems, on the outer surface and inside the mesocarp of the fruit, in the mesotesta and endotesta layers of the seed coat, and inside the endosperm of the seeds. Our results support the notion that the SW-producing fungus is vertically transmitted in the host plant A. garbancillo.


Assuntos
Astrágalo , Fabaceae , Alternaria/genética , Simbiose , Astrágalo/microbiologia , Swainsonina/análise
2.
J Agric Food Chem ; 72(4): 2397-2409, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38230662

RESUMO

Endophytic fungi can benefit the host plant and increase the plant resistance. Now, there is no in-depth study of how Alternaria oxytropis (A. oxytropis) is enhancing the ability of inhibiting pathogenic fungi in Oxytropis ochrocephala (O. ochrocephala). In this study, the fungal community and metabolites associated with endophyte-infected (EI) and endophyte-free (EF) O. ochrocephala were compared by multiomics. The fungal community indicated that there was more A. oxytropis, less phylum Ascomycota, and less genera Leptosphaeria, Colletotrichum, and Comoclathris in the EI group. As metabolic biomarkers, the levels of swainsonine and apigenin-7-O-glucoside-4-O-rutinoside were significantly increased in the EI group. Through in vitro validation experiments, swainsonine and apigenin-7-O-glucoside-4-O-rutinoside can dramatically suppress the growth of pathogenic fungi Leptosphaeria sclerotioides and Colletotrichum americae-borealis by increasing the level of oxidative stress. This work suggested that O. ochrocephala containing A. oxytropis could increase the resistance to fungal diseases by markedly enhancing the content of metabolites inhibiting pathogenic fungi.


Assuntos
Ascomicetos , Oxytropis , Swainsonina/metabolismo , Oxytropis/metabolismo , Oxytropis/microbiologia , Apigenina/metabolismo , Multiômica , Alternaria/metabolismo , Fungos/metabolismo , Ascomicetos/metabolismo , Endófitos/genética , Endófitos/metabolismo , Glucosídeos/metabolismo
3.
Toxicon ; 235: 107325, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838004

RESUMO

The consumption of Ipomoea carnea produces a neurological syndrome in animals. The toxic principles of I. carnea are the alkaloids swainsonine (SW) and calystegines B1, B2, B3 and C1. In this study, we investigated the cytotoxicity of an alkaloid extract of Ipomoea carnea (AEE) and natural swainsonine (SW) isolated from Astragalus lentiginosus (25-1000 µM of SW) for 48 h in a glioma cell line. Although the natural SW did not induce any changes in cell viability, the AEE exhibited a dose dependent cytotoxic effect and release of lactate dehydrogenase (LDH) indicative of cytolysis. In order to evaluate the morphological changes involved, cells were examined using phase contrast and fluorescence microscopy with acridine orange-ethidium bromide staining. The AEE caused a cell death compatible with necrosis, whereas exposure to 1000 µM of SW resulted in cytoplasmic vacuolation. Immunocytochemical studies revealed that astrocytes treated with 150 µM of AEE from I. carnea or 1000 µM of SW exhibited morphological characteristics of cell activation. These findings suggest that swainsonine would not be the only component present in the AEE of I. carnea responsible for in vitro cytotoxicity. Calystegines might also play a role in acting synergistically and triggering cell death through necrosis.


Assuntos
Alcaloides , Antineoplásicos , Ipomoea , Animais , Swainsonina/toxicidade , Alcaloides/farmacologia , Neuroglia , Extratos Vegetais/toxicidade , Necrose
4.
Chem Biol Interact ; 382: 110629, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442287

RESUMO

Swainsonine (SW) is the primary toxin in locoweed, a poisonous plant. SW can cause animal poisoning, affect the quality and safety of meat products and threaten human health, but the mechanism of its toxicity is little defined. Here, we identified 159 differentially expressed proteins, many of which are involved in autophagy and glycosylation modification processes, using proteomics sequencing analysis. O-linked-N-acetylglucosamylation (O-GlcNAcylation) is a glycosylation modification widely involved in various biological processes. Our results show that SW toxicity is related to O-GlcNAcylation. In addition, increased O-GlcNAcylation with the O-GlcNAcase (OGA) inhibitor TMG promoted autophagy, while decreased O-GlcNAcylation with the O-GlcNAc transferase (OGT) inhibitor OSMI inhibited autophagy. Further analysis by Immunoprecipitation (IP) showed that SW could change the O-GlcNAcylation of Cathepsin D (CTSD), reducing the expression of mature CTSD (m-CTSD). In summary, these findings suggest that SW inhibits the O-GlcNAcylation of CTSD, affecting its maturation and leading to the impairment of lysosome function. Consequently, it inhibits autophagy degradation, and causes cytotoxicity, providing a new theoretical basis for SW toxicological mechanism.


Assuntos
Processamento de Proteína Pós-Traducional , Swainsonina , Animais , Humanos , Swainsonina/toxicidade , Catepsina D , Glicosilação , Autofagia
5.
Curr Microbiol ; 80(7): 232, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264252

RESUMO

Astragalus adsurgens (A. adsurgens), which is considered a forage in China, grows widely in Eurasia and North America. However, Alternaria gansuense (A. gansuense) (synonym: Embellisia astragali) systematically infects A. adsurgens, producing swainsonine (SW), which poisons domesticated animals. In this study, we hypothesized that the A. gansuense SW-producing fungus is morphologically and molecularly related to the locoweed endophyte, Alternaria oxytropis (A. oxytropis), which systematically grows in host plants. Therefore, pure cultures of the fungi from diseased plants or endophytic interactions were collected from fields and assayed for SW via high-performance liquid chromatography linked to mass spectroscopy (HPLC-MS). The production of SW was also detected in A. adsurgens, A. oxytropis and diseased plants by assaying for the presence of the ß-ketoacyl synthase (KS) gene, which is required for SW synthesis. Diseased A. adsurgens and pure cultures of A. gansuense have SW and the healthy-looking A. adsurgens plants also contained SW, probably because they were infected with A. gansuense. Therefore, A. adsurgens-infected A. gansuense are not safe for livestock consumption.


Assuntos
Alternaria , Swainsonina , Animais , Swainsonina/análise , Alternaria/genética , Endófitos , China
6.
New Phytol ; 238(4): 1351-1361, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36727281

RESUMO

Heritable fungal endosymbiosis is underinvestigated in plant biology and documented in only three plant families (Convolvulaceae, Fabaceae, and Poaceae). An estimated 40% of morning glory species in the tribe Ipomoeeae (Convolvulaceae) have associations with one of two distinct heritable, endosymbiotic fungi (Periglandula and Chaetothyriales) that produce the bioactive metabolites ergot alkaloids, indole diterpene alkaloids, and swainsonine, which have been of interest for their toxic effects on animals and potential medical applications. Here, we report the occurrence of ergot alkaloids, indole diterpene alkaloids, and swainsonine in the Convolvulaceae; and the fungi that produce them based on synthesis of previous studies and new indole diterpene alkaloid data from 27 additional species in a phylogenetic, geographic, and life-history context. We find that individual morning glory species host no more than one metabolite-producing fungal endosymbiont (with one possible exception), possibly due to costs to the host and overlapping functions of the alkaloids. The symbiotic morning glory lineages occur in distinct phylogenetic clades, and host species have significantly larger seed size than nonsymbiotic species. The distinct and widely distributed endosymbiotic relationships in the morning glory family and their alkaloids provide an accessible study system for understanding heritable plant-fungal symbiosis evolution and their potential functions for host plants.


Assuntos
Alcaloides , Convolvulaceae , Alcaloides de Claviceps , Ipomoea , Animais , Convolvulaceae/metabolismo , Convolvulaceae/microbiologia , Swainsonina/metabolismo , Filogenia , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea/microbiologia , Alcaloides de Claviceps/metabolismo , Alcaloides/metabolismo , Alcaloides Diterpenos
7.
J Vet Med Sci ; 85(2): 244-251, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36596563

RESUMO

Locoweeds, a type of poisonous weedare, are widely distributed throughout the world and have a significant impact on the development of herbivore animal husbandry. Swainsonine (SW), the main toxin in locoweeds, can competitively inhibit lysosomes α-mannosidase (LAM) in animal cells, resulting in α-mannosidosis. However, the specifics of the interaction between SW and LAM are still unclear. Here, we used molecular docking to predicte the interaction points between SW and LAM, built mutated lysosomes α-mannosidase (LAMM), and analyzed its biochemical properties changes in presumption points. The Trp at the 28th position and the Tyr at the 599th position of the LAM were interaction point candidates, and the above two amino acids in Capra hircus LAM (chLAM), were successfully mutated to glycine by constructing recombinant yeast GS115/PIC9K- LAMM. The results showed that the sensitivity of Capra hircus LAMM (chLAMM), to SW decreased significantly compared with wild-type LAM, the enzyme activity of LAM decreased approximately threefold, the optimum temperature of LAMM decreased from 55°C to 50°C, the optimum pH value increased from 4.5 to 5.0, and the effects of Mn2+, Fe3+, Al3+, Co2+, Cr3+, and ethylenediaminetetraacetic acid (EDTA) on LAM enzyme activity before and after point mutation changed significantly. These findings help us better understanding the molecular mechanism of the interaction mechanism between SW and chLAM, and provide new reference for solving locoweeds poisoning.


Assuntos
Lisossomos , Swainsonina , Animais , alfa-Manosidase/genética , Simulação de Acoplamento Molecular , Lisossomos/metabolismo , Cabras/metabolismo , Manosidases/metabolismo
8.
Biotechnol Lett ; 45(4): 509-519, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36708459

RESUMO

OBJECTIVE: Swainsonine (SW) is the principal toxic ingredient of locoweeds, and is produced by multiple fungi. A key enzyme in the SW synthesis pathway is a hybrid swnk/nrps. To analyze the role of swnk in the SW biosynthesis pathway of Metarhizium anisopliae. RESULTS: The concentration of SW and the swnk expression in M. anisopliae fermentation from 1st to 7th day were determined using LC-MS and RT-qPCR, respectively. M. anisopliae had the highest SW content and swnk expression on the 5th day of fermentation; Mutant strain (MT) were obtained by PEG-mediated homologous recombination (HR) which knocked out swnk in the wild-type (WT) strain. Complemented-type (CT) strain were obtained by transforming a modified PUC19 complementation vector containing the geneticin (G418) resistance gene and swnK. SW was not detected in the MT strain and reverted to its original level in the CT strain; A Psilent-1 plasmid with Benomyl (ben)-resistant that was used interfered with swnk of WT strain. The level of SW was markedly diminished in the RNAi strain. RNAi of swnk affects the formation of the cell wall in M. anisopliae. CONCLUSION: These results indicate that swnk plays a crucial role in the SW biosynthesis of M. anisopliae.


Assuntos
Metarhizium , Swainsonina , Swainsonina/metabolismo , Metarhizium/genética , Metarhizium/metabolismo , Genes Fúngicos , Fermentação
9.
J Agric Food Chem ; 71(3): 1758-1767, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36638362

RESUMO

Swainsonine induced liver inflammation in livestock; however, the underlying mechanisms, especially the role of bile acids (BAs), in the pathogenesis remained elusive. Here, our results showed that swainsonine induced hepatic inflammation via changing BA metabolism and gut microbiota in mice. Swainsonine significantly upregulated the levels of deoxycholic acid (DCA) and taurine-ß-muricholic acid (T-ß-MCA) in the serum and liver of mice due to the markedly increased genus Clostridium and the decreased genus Lactobacillus in the gut. As antagonists of the farnesoid X receptor (FXR), elevated DCA and T-ß-MCA inhibited hepatic Fxr gene expression and thus suppressed FXR-SHP signaling and activated hepatic Cyp7a1 gene expression, which induced a significant upregulation of the total BA level in serum, contributing to liver inflammation. These findings offer new insights into the underlying mechanisms in which swainsonine induced liver inflammation in mice via the gut-liver axis and suggest that gut microbiota and its metabolite BAs may be underlying triggering factors.


Assuntos
Microbioma Gastrointestinal , Swainsonina , Camundongos , Animais , Swainsonina/metabolismo , Fígado/metabolismo , Ácidos e Sais Biliares/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
10.
J Exp Bot ; 74(3): 931-944, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36306203

RESUMO

Locoweeds are leguminous forbs known for their toxicity to livestock caused by the endophytic fungi Alternaria sect. Undifilum. Unlike the defensive mutualisms reported in many toxin-producing endophytes and their plant hosts, the benefits that A. sect. Undifilum can confer to it host plants remains unclear. Here, we conducted physiological and genetic analyses to show that A. (sect. Undifilum) oxytropis influences growth, especially root development, in its locoweed host Oxytropis ochrocephala and Arabidopsis. The presence of A. oxytropis significantly decreased primary root length while increasing the numbers of lateral roots and root hairs, and increasing plant leaf area and fresh weight. The fungus also increased the concentrations of plant endogenous auxin, and the expression of key genes for auxin biosynthesis, signaling, and transport. These effects on root development were abolished in mutants deficient in auxin signaling and polar transport. Alternaria oxytropis down-regulated expression of PIN1 but increased expression of PIN2, PIN7, and AUX1, which might reflect alterations in the spatial accumulation of auxin responsible for the changes in root architecture. Plant growth was insensitive to A. oxytropis when naphthylphthalamic acid was applied. Our findings indicate a function of A. oxytropis in promoting the growth and development of Arabidopsis via the regulation of auxin, which in turn suggests a possible role in benefiting its locoweed hosts via a process independent of its toxin production.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Endófitos/fisiologia , Alternaria , Arabidopsis/metabolismo , Swainsonina/análise , Swainsonina/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
11.
Mol Ecol Resour ; 23(1): 253-272, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35932461

RESUMO

Locoweeds are perennial forbs poisonous to livestock and cause extreme losses to animal husbandry. Locoweed toxicity is attributed to the symbiotic endophytes in Alternaria sect. Undifilum, which produce a mycotoxin swainsonine (SW). We performed a de novo whole genome sequencing of the most common locoweed in China, Oxytropis ochrocephala (2n = 16), and assembled a high-quality, chromosome-level reference genome. Its genome size is 958.83 Mb with 930.94 Mb (97.09%) anchored and oriented onto eight chromosomes, and 31,700 protein-coding genes were annotated. Phylogenetic and collinearity analysis showed it is closely related to Medicago truncatula with a pair of large interchromosomal rearrangements, and both species underwent a whole-genome duplication event. We also derived the genome of A. oxytropis at 74.48 Mb with a contig N50 of 8.87 Mb and 10,657 protein-coding genes, and refined the genes of SW biosynthesis. Multiple Alternaria species containing the swnK gene were grouped into a single clade, but in other genera, swnK's homologues are diverse. Resequencing of 41 A. oxytropis strains revealed one SNP in the SWN cluster causing changes in SW concentration. Comparing the transcriptomes of symbiotic and nonsymbiotic interactions identified differentially expressed genes (DEGs) linked to defence and secondary metabolism in the host. Within the endophyte DEGs were linked to cell wall degradation, fatty acids and nitrogen metabolism. Symbiosis induced the upregulation of most of the SW biosynthetic genes. These two genomes and relevant sequencing data should provide valuable genetic resources for the study of the evolution, interaction, and SW biosynthesis in the symbiont.


Assuntos
Ascomicetos , Oxytropis , Swainsonina/análise , Swainsonina/metabolismo , Oxytropis/genética , Oxytropis/metabolismo , Endófitos/genética , Endófitos/metabolismo , Alternaria/genética , Alternaria/metabolismo , Simbiose/genética , Filogenia , Ascomicetos/metabolismo
12.
Toxicol Lett ; 373: 41-52, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36402259

RESUMO

The indolizidine alkaloid, swainsonine (SW), is the main toxic component of locoweed, which can cause locoism in animals with characteristic neurological dysfunction. Pathological manifestations at cellular level include extensive vacuolar degeneration. Studies have shown that SW can induces autophagy, but the role and mechanism of autophagy in SW-induced vacuolar degeneration is unclear. In this study, we analyzed the role of autophagy in SW-induced cell injury in mouse hippocampal neurons cell line (HT22) using western blotting, qRT-PCR, transmission electron microscopy and immunofluorescence microscopy. The results showed that the expressions of LC3-II, ATG5, Beclin1 and p62 proteins and their mRNAs in HT22 cells were induced by SW treatment. The SW treatment increased the number of autophagosomes with enhanced fluorescence intensity of monodansylcadaverine (MDC) and LC3-II in a time-dose dependent manner. The results of lysosome staining showed that SW could increase the number of lysosomes, increase the intraluminal pH. Transmission electron microscopy results indicate that SW induced autophagosomes, and Baf A1 could effectively alleviate SW-induced vacuolar degeneration. At the molecular level, SW treatment inhibited the expression of p-PI3K, p-AKT, p-ERK, p-AMPK, p-mTOR, p-p70S6K and p-4EBP1 and promoted the expression of p53. Our results collectively suggest, PI3K/AKT/mTOR, ERK/mTOR and p53/mTOR signaling pathways are involved in the regulation of SW-induced autophagy in HT22 cells, while the AMPK/mTOR signaling pathway is not involved in this regulation. Inhibition of autophagic degradation can effectively alleviate SW-induced vacuolar degeneration.


Assuntos
Autofagia , Fosfatidilinositol 3-Quinases , Swainsonina , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Swainsonina/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo
13.
J Vet Diagn Invest ; 34(4): 674-678, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35524435

RESUMO

Several plants that contain indolizidine alkaloids, including swainsonine, are toxic to livestock, causing dysfunctional lysosomes and storage disease. Swainsonine induces a neurovisceral disease, known as locoism, in sheep, goats, and cattle, which occurs in several parts of the world, including, but not limited to, the western United States, China, and parts of Australia. In South America, locoism has been described in the Andean region of Argentina affecting sheep, cattle, and llamas. Intoxication by consumption of Astragalus punae was suspected in 4 llamas in Jujuy Province, northwestern Argentina. The grazing area contained abundant specimens of A. punae. The clinical course was ~15 d, and included moderate ataxia, incoordination of hindlimbs, and progressive loss of body condition. Microscopically, fine cytoplasmic microvacuolation was observed in the proximal convoluted renal tubules. Ultrastructurally, these changes consisted of severely dilated lysosomes. Swainsonine was detected in stem and leaf samples of A. punae at a concentration of 0.06%. Based on clinical history and signs, histologic and ultrastructural changes, and plant analysis, a diagnosis of swainsonine toxicosis caused by consumption of A. punae was made, which has not been reported previously, to our knowledge.


Assuntos
Astrágalo , Camelídeos Americanos , Doenças dos Bovinos , Intoxicação por Plantas , Doenças dos Ovinos , Animais , Argentina/epidemiologia , Bovinos , Intoxicação por Plantas/epidemiologia , Intoxicação por Plantas/veterinária , Ovinos , Doenças dos Ovinos/epidemiologia , Swainsonina/análise , Swainsonina/toxicidade
14.
Biochim Biophys Acta Gen Subj ; 1866(9): 130168, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35594965

RESUMO

Swainsonine (SWA), a potent inhibitor of class II α-mannosidases, is present in a number of plant species worldwide and causes severe toxicosis in livestock grazing these plants. The mechanisms underlying SWA-induced animal poisoning are not fully understood. In this study, we analyzed the alterations that occur in N- and free N-glycomic upon addition of SWA to HepG2 cells to understand better SWA-induced glycomic alterations. After SWA addition, we observed the appearance of SWA-specific glycomic alterations, such as unique fucosylated hybrid-type and fucosylated M5 (M5F) N-glycans, and a remarkable increase in all classes of Gn1 FNGs. Further analysis of the context of these glycomic alterations showed that (fucosylated) hybrid type N-glycans were not the precursors of these Gn1 FNGs and vice versa. Time course analysis revealed the dynamic nature of glycomic alterations upon exposure of SWA and suggested that accumulation of free N-glycans occurred earlier than that of hybrid-type N-glycans. Hybrid-type N-glycans, of which most were uniquely core fucosylated, tended to increase slowly over time, as was observed for M5F N-glycans. Inhibition of swainsonine-induced unique fucosylation of hybrid N-glycans and M5 by coaddition of 2-fluorofucose caused significant increases in paucimannose- and fucosylated paucimannose-type N-glycans, as well as paucimannose-type free N-glycans. The results not only revealed the gross glycomic alterations in HepG2 cells induced by swainsonine, but also provide information on the global interrelationships between glycomic alterations.


Assuntos
Glicômica , Swainsonina , Animais , Glicosilação , Células Hep G2 , Humanos , Polissacarídeos , Swainsonina/toxicidade
15.
Toxins (Basel) ; 14(3)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35324678

RESUMO

Oxytropis plants are widely distributed in the grasslands in northern China. Some Oxytropis species have been reported to contain the mycotoxin swainsonine, an alkaloid which causes poisoning in livestock, referred to as locoism. Previous studies showed that endophytic fungi (Alternaria oxytropis) symbiotically associate with these Oxytropis species to produce swainsonine. However, the influence of variation within the Oxytropis genus on the fixation or loss of symbiosis and toxicity is poorly understood, as is the influence of environmental factors. Here we used a collection of 17 common Oxytropis species sampled in northern China to assess genetic diversity using genotyping by sequencing which was compared with the levels of the endophyte and swainsonine. Results showed that nine Oxytropis species have detectable A. oxytropis colonisation, and seven Oxytropis species contain sufficient swainsonine to be considered poisonous, whereas the rest may be non-toxic. Species variation rather than the genetic lineage was associated with the fixation or loss of endophyte and swainsonine production, which appears to have resulted from genetic drift. Genotype × Environment (G × E) effects were also found to influence endophyte and swainsonine levels amongst species of the Oxytropis genus. Our study will provide a better understanding about the evolutionary basis of A. oxytropis symbiosis and swainsonine biosynthesis in locoweeds.


Assuntos
Ascomicetos , Micotoxinas , Oxytropis , Endófitos/genética , Especificidade de Hospedeiro , Oxytropis/genética , Oxytropis/microbiologia , Swainsonina , Simbiose
16.
Appl Microbiol Biotechnol ; 105(16-17): 6419-6433, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34402940

RESUMO

Plants produce various plant secondary compounds (PSCs) to deter the foraging of herbivorous mammals. However, little is known about whether PSCs can reshape gut microbiota and promote gut homeostasis of hosts. Using 16S rDNA sequencing to investigate the effects of PSCs on the gut microbiota of small herbivorous mammals, we studied plateau pikas (Ochotona curzoniae) fed diets containing swainsonine (SW) extracted from Oxytropis ochrocephala. Our results showed that both long- and short-term treatment of a single artificial diet in the laboratory significantly reduced alpha diversity and significantly affected beta diversity, core bacteria abundance, and bacterial functions in pikas. After SW was added to the artificial diet, the alpha diversity significantly increased in the long-term treatment, and core bacteria (e.g., Akkermansiaceae) with altered relative abundances in the two treatments showed no significant difference compared with pikas in the wild. The complexity of the co-occurrence network structure was reduced in the artificial diet, but it increased after SW was added in both treatments. Further, the abundances of bacteria related to altered alanine, aspartate, and glutamate metabolism in the artificial diet were restored in response to SW. SW further decreased the concentration of short-chain fatty acids (SCFAs) in both treatments. Our results suggest that PSCs play a key role in regulating gut microbiota community and intestinal homeostasis, thereby maintaining host health. KEY POINTS: • Swainsonine improves the intestinal bacterial diversity of plateau pikas. • Swainsonine promotes the recovery of core bacterial abundances in the gut of plateau pikas. • Swainsonine promotes the restoration of intestinal bacterial functions of plateau pikas.


Assuntos
Microbioma Gastrointestinal , Lagomorpha , Animais , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Swainsonina
17.
Folia Histochem Cytobiol ; 59(2): 134-143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151999

RESUMO

INTRODUCTION: Vascular smooth muscle cells (VSMCs)-based foam cell formation is a crucial factor in the atherosclerosis process. We aimed to explore the mechanism of Golgi a-mannosidase II (GMII) effects on the VSMCs-based foam cell formation. MATERIAL AND METHODS: VSMCs were exposed to different concentrations of low-density lipoproteins (LDLs), lipopolysaccharide (LPS), and/or GMII inhibitor (swainsonine). The qRT-PCR and western blot were used for expression analysis. Oil Red O staining was used to verify changes of lipid droplets in VSMCs. The translocation of the SCAP from the endoplasmic reticulum (ER) to Golgi was detected by immunofluorescence (IF). RESULTS: LPS disrupted the LDLs-mediated regulation of LDL receptor (LDLr) and increased intracellular cholesterol ester, which was inversely inhibited by swainsonine. The activity of a-mannosidase II and GMII expression were decreased by LDLs but increased by the addition of LPS. Conversely, LPS-induced enhancement was reversed by swainsonine. Additionally, swainsonine reversed the LPS-induced increase of intracellular lipid droplets in the presence of LDLs. Expression analysis demonstrated that LDLr, SCAP, and SREBP2 were up-regulated by LPS, but reversed by swainsonine in LDLs-treated cells. IF staining revealed that swainsonine inhibited the translocation of SCAP to Golgi under inflammatory stress. CONCLUSIONS: Collectively, swainsonine restrained LDLr expression to suppress the formation of VSMCs-based foam cells by reducing SREBP2 and SCAP under inflammatory stress conditions, suggesting that GMII contributes to the formation of VSMCs-based foam cells under inflammatory stress.


Assuntos
Células Espumosas/metabolismo , Inflamação/metabolismo , Manosidases/metabolismo , Músculo Liso Vascular/metabolismo , Ésteres do Colesterol/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/farmacologia , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Inflamação/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos , Manosidases/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Músculo Liso Vascular/citologia , Receptores de LDL/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Swainsonina/farmacologia , Regulação para Cima/efeitos dos fármacos
18.
FEMS Microbiol Lett ; 368(8)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33942869

RESUMO

Swainsonine, an indolizidine alkaloid, is a promising anti-tumorigenic compound. Biological production of swainsonine was prospective, but the low swainsonine yield of wild type Alternaria oxytropis limited its production on a large scale. In present work, a stable A. oxytropis mutant UO1 with swanisonine yield of 14.84% higher than the wild-type strain was successfully obtained after heavy-ion irradiation. The A. oxytropis mutant UO1 and original wild-type strain were futher evaluated for SW concentrations under different factors. Results showed that the optimum culture temperature was 25°C. The optimum initial medium pH was 6.5 and the optimum inoculum size was 2 mL per 200 mL. Addition of the biosynthetic precursor L-pipecolic acids and L-lysine appropriately could increase the SW synthesis. These findings provided a theoretical basis and scientific data for the industrial production of swainsonine.


Assuntos
Alternaria/metabolismo , Microbiologia Industrial , Swainsonina/metabolismo , Alternaria/genética , Meios de Cultura , Íons Pesados , Mutagênese
19.
Toxicon ; 197: 40-47, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33887299

RESUMO

In order to determine the toxicity of swainsonine present in Ipomoea carnea for goats and sheep, 12 goats and 12 sheep were divided into 3 groups of 4 goats (G1, G2 and G3) and 3 groups of 4 sheep (S4, S5 and S6) each. Groups G1 and S4 were used as controls; G2 and S5 received 1 mg/kg body weight of swainsonine from plant material and G3 and S6 received 3 mg/kg. Groups G2 and G3 presented the first clinical signs, on average, after the 54th and 39th days of ingestion of the plant, respectively. Groups S5 and S6 presented the first clinical signs, on average, on the 64th and 42nd days of the experiment, respectively. In sheep, in addition to having a longer period of ingestion until the onset of clinical signs, these signs were less severe, being evident only after the animals were forced to move. These results demonstrated that goats are more susceptible to swainsonine poisoning than sheep. Complete regression of clinical signs was observed in 5 goats and 6 sheep. However, three goats and one sheep remained with clinical signs until 120 days of the experiment, suggesting that to control the poisoning the animals should be removed from the pastures immediately after the first clinical signs. There were no significant differences in weight between the different groups, suggesting that for goats ingesting the plant, toxic Ipomoea species can be used as forage for intermittent periods of 15-30 days.


Assuntos
Ipomoea , Intoxicação por Plantas , Animais , Peso Corporal , Cabras , Intoxicação por Plantas/etiologia , Intoxicação por Plantas/veterinária , Ovinos , Swainsonina/toxicidade
20.
Magn Reson Chem ; 59(1): 16-22, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910519

RESUMO

Swainsonine (SW, 1), a unique indolizine with poly-hydroxyl groups, was re-isolated from the plant endophytic fungus Alternaria oxytropis. The structure (including planar structure and relative configuration) was systematically elucidated by NMR spectra (including 1 H, 13 C, 1 H-1 H COSY, HMQC, HMBC, and NOESY spectra in DMSO-d6 and in CD3 OD); 1 H NMR spectra of the modified Mosher's products were first used to determine the absolute configuration of SW. More importantly, the complex coupled features of H-7α, H-7ß, and H-6α in the 1 H NMR spectrum of (1) were analyzed in details, which will provide aids for the planar and relative configuration determination of analogs.


Assuntos
Micotoxinas/análise , Swainsonina/análise , Alternaria/química , Espectroscopia de Ressonância Magnética , Micotoxinas/química , Swainsonina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...